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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple

of mathematical points. Suppose thafs an “unknown” vector that we plan to
determine by some minimization principle. Leffu] > 0 and B[u] > 0 be two
positive functionals ofi, so that we can try to determineby either

minimize:  A[u] or minimize:  BJu] (18.4.3

(Of course these will generally give different answersufgrAs another possibility,
now suppose that we want to minimizgu] subject to theconstraint thatB[u] have

some particular value, say The method of Lagrange multipliers gives the variation

5 5
S AU + A (Blu] = )} = == (Alu] + A Blu]) = 0 (18.4.2

where \; is a Lagrange multiplier. Notice thatis absent in the second equality,

since it doesn't depend on.

Next, suppose that we change our minds and decide to miniffjidesubject
to the constraint tha#[u] have a particular valuey. Instead of equation (18.4.2)
we have

5 5
S {BIU] + Aa(Alu] — )} = == (Blu] + Ao Alu]) = 0 (18.4.3

with, this time, A, the Lagrange multiplier. Multiplying equation (18.4.3) by the
constantl /)., and identifyingl /A, with \;, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-paramet

family of solutions, sayu(\;). As \; varies from0 to oo, the solutionu()\;)
varies along a so-calledade-off curve between the problem of minimizing and
the problem of minimizingB. Any solution along this curve can equally well
be thought of as either (i) a minimization of for some constrained value &,
or (i) a minimization of B for some constrained value of, or (iii) a weighted
minimization of the sumA4 + \{B.

The second preliminary point has to do wigenerateminimization principles.
In the example above, now suppose tHt] has the particular form

Alul = |A-u—c? (18.4.4

for some matrixA and vector. If A has fewer rows than columns, oiAfis square
but degenerate (has a nontrivial nullspace, &6, especially Figure 2.6.1), then
minimizing .4[u] will not give a unique solution fou. (To see why, reviev§15.4,
and note that for a “design matri® with fewer rows than columns, the matrix
AT . A in the normal equations 15.4.10 is degeneratddwever, if we add any
multiple \ times a nondegenerate quadratic fdBfuo], for exampleu - H - u with H

a positive definite matrix, then minimization gf{u] + A\5[u] will lead to a unique

solution foru. (The sum of two quadratic forms is itself a quadratic form, with the

second piece guaranteeing nondegeneracy.)
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We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are positive,
only one of the two need be nondegenerate for the overall problem to be well-posed.
We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose that(x) is some unknown or underlying Gtands for both unknown
and underlying!) physical process, which we hope to determine by a st of
measurements;, : = 1,2,..., N. The relation between(z) and thec;’s is that
eache; measures a (hopefully distinct) aspect.@f) through its own linear response
kernelr;, and with its own measurement ermoy. In other words,

ci =8 +n; = /rl(x)u(a:)da: +n; (18.4.5

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of I|near|ty
this is quite a general formulation. Thg's might approximate values af(z) a
certain locationse;, in which caser;(xz) would have the form of a more or Iess
narrow instrumental response centered arauedz ;. Or, thec;'s might “live” in an
entirely different function space from(z), measuring different Fourier components
of u(z) for example.

Theinverseproblemis, given the:;’s, ther; (z)’s, and perhaps some information
about the errors; such as their covariance matrix
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Sij = COVEU[TLZ', nj] (1846

how do we find a good statistical estimatorudf), call it u(x)?

It should be obvious that this is an ill-posed problem. After all, how can we
reconstruct a whole functiof(x) from only a finite number of discrete valueg?

Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying funetion or about

the nature of the response functionéz), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can't really want every point of the functionz(z). We do want some
large numbet) of discrete pointsc,, u = 1,2,..., M, whereM is sufficiently
large, and the:,’s are sufficiently evenly spaced, that neithgr) norr;(z) varies
much between any,, andz, 4. (Here and following we will use Greek letters like
1 to denote values in the space of the underlying process, and Roman letters like
to denote values of immediate observables.) For such a densesgispive can
replace equation (18.4.5) by a quadrature like

¢ = Z R u(x,) +n; (18.4.7
w

@queo@
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where theN x M matrix R has components

Ry = ri(@u) (@41 — Tp-1)/2 (18.4.8
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(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(x,)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form ay? measure of how well a modélz) agrees with the measured data,

M
G- Rj,ta(x,t)]
p=1

N N M
ZZ [cl ZRmu (xp 1 Sigl

=1 j=1
N 2
i = Rwu(Iu)

(compare with equation 15.1.5). He®e ! is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariancesg
with o; = (Covafi,i])'/2.

Now you can use the method of singular value decomposition (SVE}5
to find the vectoii that minimizes equation (18.4.9). Don't try to use the method
of normal equations; sinck/ is greater tharV they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singula
values, indicative of a highly non-unique solution. Among the |nf|n|ty of degenerate g
solutions (most of them badly behaved with arbitrarily laige ,,)’s) SVD will
select the one with smalle§i| in the sense of

(18.4.9

Q

/'8-008-T |[e2 10 LUO:)'JU'MMM//Zd],lu

> [a(z,)]*  aminimum (18.4.10

o

(look at Figure 2.6.1). This solution is often called thencipal solution. It
is a limiting case of what is callederoth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize:  x2[G] + A(G - ) (18.4.11

in the limit of small\. Below, we will learn how to do such minimizations, as well
as more general ones, without thé hoc use of SVD.

What happens if we determingby equation (18.4.11) with a non-infinitesimal
value of A? First, note that if\/ > N (many more unknowns than equations), then
u will often have enough freedom to be able to mak& (equation 18.4.9) quite
unrealistically small, if not zero. In the languagesdb.1, the number of degrees of
freedomy = N — M, which is approximately the expected valueyof whenv is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for thetrue underlying functioru(z), which has no adjustable parameters, the
number of degrees of freedom and the expected valye should be about ~ N.

Increasing\ pulls the solution away from minimizing? in favor of minimizing
U - 0. From the preliminary discussion above, we can view this as minimiding
subject to theconstraint that y? have some constant nonzero value. A popular
choice, in fact, is to find that value ofwhich yieldsy? = N, that is, to get about as
much extra regularization as a plausible valugéfdictates. The resulting(z) is
calledthe solution of the inverse problem with zeroth-order regularization.
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Figure 18.4.1.  Almost al inverse problem methods involve a trade-off between two optimizations:
agreement between dataand solution, or “sharpness’ of mapping between true and estimated solution (here
denoted .A), and smoothness or stability of the solution (here denoted 8). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of .4 and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actualy a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2N)'/2 (the asymptotic x>
distribution). One might equally plausibly try two values of ), one giving x 2 =
N + (2N)'/2, the other N — (2N)1/2,

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. Thefirst, A, measures something like
the agreement of a model to the data (e.g., x ), or sometimes a related quantity like
the “sharpness’ of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that A alone typically defines a highly degenerate
minimization problem.

That iswhere B comesin. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variationsin the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional or regularizing operator. In any case, minimizing BB by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing
a all to do with the measured data.
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The single central ideain inverse theory is the prescription

minimize: A+ AB (18.4.12)

for various values of 0 < A < oo aong the so-called trade-off curve (see Figure
18.4.1), and then to settle on a“best” value of A by one or another criterion, ranging
from fairly objective (e.g., making x2 = N) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting afinal A, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They aso differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do with a priori expectation, or knowledge, of a solution, while
A has something to do with a posteriori knowledge. The constant A adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.
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18.5 Linear Regularization Methods

What we will call linear regularization is also caled the Phillips-Twomey
method [1,2], the constrained linear inversion method [3], the method of regulariza-
tion [4], and Tikhonov-Miller regularization [5-7]. (It probably has other names also,
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